Homework I

(Matrices and Determinants)

Due-Date: 04/11/2006 (Sat.)

1. If \(A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix} \), \(S = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \), prove that \(D = S^{-1}AS \) is a diagonal matrix.

Verify that \(\text{Tr}(S^{-1}AS) = \text{Tr}(A) \), and that \(\text{det}(A) = \text{det}(S^{-1}AS) \), (\(\text{Tr} \) denotes trace, the sum of the diagonal elements). Show also that \(D^n = S^{-1}A^nS \), where \(n \) is a positive integer.

[25 marks]

2. (a) Show that the general matrix \(A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \) may be written in the form \(A = B + C \), where \(B \) is a symmetric matrix (i.e. \(B^T = B \)) and \(C \) is a skew-symmetric matrix (i.e. \(C^T = -C \)). Show that \(B^2 \) is a symmetric matrix and that \(C^2 \) is a diagonal matrix.

[12 marks]

(b) Given \(E = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \), where \(b \neq 0 \), and if \(E^2 = I \), evaluate \(c \) and \(d \) in terms of \(a \) and \(b \). State briefly why this matrix \(E \) is of interest.

[13 marks]

3. Verify that if \(A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \), then \(A^2 - 4A - 5I = 0 \), and hence evaluate \(A^{-1} \).

[25 marks]

4. (i) \(A, B \) and \(C \) are known matrices of size \(n \times n \). Solve the following matrix equations for the \(n \times n \) square matrix \(X \):

(a) \(B - AX = 3X + C \),

(b) \((X + 2C)B = 2(A - X)C \)

[8 marks]

[8 marks]

(ii) Prove that if \(D \) and \(E \) are two \(n \times n \) matrices and \(D \) is nonsingular, then

\[\text{det}(I - D^{-1}ED) = \text{det}(I - E). \]

[9 marks]