Study Scheme

Postgraduate Student Handbook 2018-19 (MSE-I)

FACULTY OF SCIENCE

Materials Science and Engineering

Study Scheme

M.Phil.-Ph.D. Programme in Materials Science and Engineering (Full-time and Part-time)

Applicable to students admitted in 2017-18 and thereafter

A. M.Phil. Student

1. Coursework Requirement

(a) Total number of units required for graduation within the normative study period for:

(i) Full-time students:

 First to Second Year of Attendance
 MSEG8006 in each term: 24 units
 Lecture courses (at MSEG or PHYS5000-level): 12 units

 Total: 36 units

(ii) Part-time students:

 First to Third Year of Attendance
 MSEG8003 in each term: 18 units
 Lecture courses (at MSEG or PHYS5000-level): 12 units

 Total: 30 units

(b) Thesis research/monitoring courses:

 MSEG8003, 8006

2. Other Requirements

(a) Students must fulfill the Term Assessment Requirement of the Graduate School. For details, please refer to Section 13.0 “Unsatisfactory Performance and Discontinuation of Studies” of the General Regulations Governing Postgraduate Studies which can be accessed from the Graduate School Homepage: http://www.gs.cuhk.edu.hk.

(b) Students are required to submit a research thesis and pass an oral examination for graduation.

(c) Complete an Improving Postgraduate Learning (IPL) module on “Observing Intellectual Property and Copyright Law during Research”. This will be an online module and relevant information can be accessed from the website: http://www.cuhk.edu.hk/clear/prodev/ipl.html.

(d) Students are also required to attend IPL modules on “General Safety”, “Biological Safety”, and “Chemical Safety” courses, and other required laboratory safety courses, depending on the nature of the research project. Students should consult Division for details.

(e) Students are required to complete an online Research Ethics Training (RET) module on “Publication Ethics” offered by the Office of Research and Knowledge Transfer Services (ORKTS) and obtain a valid Publication Ethics Certificate for graduation. Relevant information can be accessed from the RET website at https://www.research-ethics.cuhk.edu.hk/web/.
3. **Remarks**

(a) With the permission of the supervisor(s), up to two lecture courses can be chosen from courses in CHEM, ELEG, ACEG at 5000-level to replace two MSEG or PHYS5000 courses.

(b) Students may take either PHYS5710 or 5720 to replace at most one PHYS lecture course at 5000-level subject to Division's approval.

(c) Course exemptions may be granted on the basis of graduate level courses already taken.

(d) Continuing students must register for MSEG8003 in each term.

B. **Ph.D. Student (Pre-candidacy)**

The "candidacy requirement" comprises three major parts, namely coursework requirement, candidacy examination, and thesis proposal (and oral defence). Students must complete and fulfill all three parts within the "maximum period for fulfilling candidacy requirements". Details of the requirement are listed below:

1. **Coursework Requirement**

(a) A student with/without a research Master’s degree has to complete the followings within the normative study period:

(i) Full-time students:
 - MSEG8006 and 7210 in each term
 - A minimum of 12 units from lecture courses at MSEG or PHYS5000-level.

(ii) Part-time students:
 - MSEG8003 and 7210 in each term
 - A minimum of 12 units from lecture courses at MSEG or PHYS5000-level.

(b) Thesis research/monitoring courses:
 - MSEG8003, 8006

2. **Candidacy Examination**

(a) Students are required to take a written examination by the end of the first year from first entry. A second attempt is allowed, but it must be taken before the end of the second year from first entry. If the students fail two times, they shall be required to discontinue studies in the Graduate School.

(b) Part of the written examination can be replaced by passing some 5000-level courses at good grades, subject to Division's approval.

3. **Thesis Proposal and Oral Defence**

An oral presentation of the research plan, which should be passed by the end of the second year from first entry. A second attempt is allowed, but it must be taken within six months from the first attempt.

4. **Remarks**

(a) With the permission of the supervisor(s), up to two lecture courses can be chosen from courses in CHEM, ELEG, ACEG at 5000-level to replace two MSEG or PHYS5000 courses.

(b) Students may take either PHYS5710 or 5720 to replace at most one PHYS lecture course at 5000-level subject to Division's approval.

(c) Course exemptions may be granted on the basis of graduate level courses already taken.
C. Ph.D. Student (Post-candidacy)

1. Coursework Requirement

(a) A student with/without a research Master’s degree has to complete the followings within the normative study period:

(i) Full-time students:
 MSEG8012 and 7210 in each term

(ii) Part-time students:
 MSEG8006 and 7210 in each term

(b) Thesis research/monitoring courses:
 MSEG8003, 8006, 8012

2. Other Requirements

(a) Students must fulfill the Term Assessment Requirement of the Graduate School. For details, please refer to Section 13.0 "Unsatisfactory Performance and Discontinuation of Studies" of the General Regulations Governing Postgraduate Studies which can be accessed from the Graduate School Homepage: http://www.gs.cuhk.edu.hk.

(b) Continuing students must register for MSEG8003 in each term.

(c) Students are required to submit a research thesis and pass an oral examination for graduation.

(d) Complete an Improving Postgraduate Learning (IPL) module on “Observing Intellectual Property and Copyright Law during Research”. This will be an online module and relevant information can be accessed from the website: http://www.cuhk.edu.hk/clear/prodev/ipl.html.

(e) Students are also required to attend IPL modules on “General Safety”, “Biological Safety”, and “Chemical Safety” courses, and other required laboratory safety courses, depending on the nature of the research project. Students should consult Division for details.

(f) Students are required to complete an online Research Ethics Training (RET) module on “Publication Ethics” offered by the Office of Research and Knowledge Transfer Services (ORKTS) and obtain a valid Publication Ethics Certificate for graduation. Relevant information can be accessed from the RET website at https://www.research-ethics.cuhk.edu.hk/web/.

Applicable to students admitted in 2016-17 and before

A. M.Phil. Student

1. Coursework Requirement

(a) Total number of units required for graduation within the normative study period for:

(i) Full-time students:
 First to Second Year of Attendance
 MSEG8006 in each term 24 units
 Lecture courses (at MSEG or PHYS5000-level) 12 units

 Total: 36 units

(ii) Part-time students:
First to Third Year of Attendance

MSEG8003 in each term: 18 units
Lecture courses (at MSEG or PHYS5000-level): 12 units

Total: 30 units

(b) Thesis research/monitoring courses:
MSEG8003, 8006

2. Other Requirements

(a) Students must fulfill the Term Assessment Requirement of the Graduate School. For details, please refer to Section 13.0 “Unsatisfactory Performance and Discontinuation of Studies” of the General Regulations Governing Postgraduate Studies which can be accessed from the Graduate School Homepage: http://www.gs.cuhk.edu.hk.

(b) Students are required to submit a research thesis and pass an oral examination for graduation.

(c) Complete an Improving Postgraduate Learning (IPL) module on “Observing Intellectual Property and Copyright Law during Research”. This will be an online module and relevant information can be accessed from the website: http://www.cuhk.edu.hk/clear/prodev/ipl.html.

(d) Students are also required to attend IPL modules on “General Safety”, “Biological Safety”, and “Chemical Safety” courses, and other required laboratory safety courses, depending on the nature of the research project. Students should consult Division for details.

3. Remarks

(a) With the permission of the supervisor(s), up to two lecture courses can be chosen from courses in CHEM, ELEG, ACEG at 5000-level to replace two MSEG or PHYS5000 courses.

(b) Students may take either PHYS5710 or 5720 to replace at most one PHYS lecture course at 5000-level subject to Division’s approval.

(c) Course exemptions may be granted on the basis of graduate level courses already taken.

(d) Continuing students must register for MSEG8003 in each term.

B. Ph.D. Student (Pre-candidacy)

The “candidacy requirement” composes of three major parts, namely coursework requirement, candidacy examination, and thesis proposal (and oral defence). Students must complete and fulfill all three parts within the “maximum period for fulfilling candidacy requirements”. Details of the requirement are listed below:

1. Coursework Requirement

(a) A student with/without a research Master’s degree has to complete the followings within the normative study period:

 (i) Full-time students:
 MSEG8006 and 7210 in each term
 A minimum of 12 units from lecture courses at MSEG or PHYS5000-level.

 (ii) Part-time students:
 MSEG8003 and 7210 in each term
 A minimum of 12 units from lecture courses at MSEG or PHYS5000-level.

(b) Thesis research/monitoring courses:
2. **Candidacy Examination**

 (a) Students are required to take a written examination by the end of the first year from first entry. A second attempt is allowed, but it must be taken before the end of the second year from first entry. If the students fail two times, they shall be required to discontinue studies in the Graduate School.

 (b) Part of the written examination can be replaced by passing some 5000-level courses at good grades, subject to Division’s approval.

3. **Thesis Proposal and Oral Defence**

 An oral presentation of the research plan, which should be passed by the end of the second year from first entry. A second attempt is allowed, but it must be taken within six months from the first attempt.

4. **Remarks**

 (a) With the permission of the supervisor(s), up to two lecture courses can be chosen from courses in CHEM, ELEG, ACEG at 5000-level to replace two MSEG or PHYS5000 courses.

 (b) Students may take either PHYS5710 or 5720 to replace at most one PHYS lecture course at 5000-level subject to Division’s approval.

 (c) Course exemptions may be granted on the basis of graduate level courses already taken.

C. **Ph.D. Student (Post-candidacy)**

1. **Coursework Requirement**

 (a) A student with/without a research Master’s degree has to complete the followings within the normative study period:

 (i) Full-time students:
 MSEG8012 and 7210 in each term

 (ii) Part-time students:
 MSEG8006 and 7210 in each term

 (b) Thesis research/monitoring courses:
 MSEG8003, 8006, 8012

2. **Other Requirements**

 (a) Students must fulfill the Term Assessment Requirement of the Graduate School. For details, please refer to Section 13.0 “Unsatisfactory Performance and Discontinuation of Studies” of the General Regulations Governing Postgraduate Studies which can be accessed from the Graduate School Homepage: http://www.gs.cuhk.edu.hk.

 (b) Continuing students must register for MSEG8003 in each term.

 (c) Students are required to submit a research thesis and pass an oral examination for graduation.

 (d) Complete an Improving Postgraduate Learning (IPL) module on “Observing Intellectual Property and Copyright Law during Research”. This will be an online module and relevant information can be accessed from the website: http://www.cuhk.edu.hk/clear/prodev/ipl.html.

 (e) Students are also required to attend IPL modules on “General Safety”, “Biological Safety”, and “Chemical Safety” courses, and other required laboratory safety courses, depending on the nature of the research project. Students should consult Division for details.
Course List

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSEG5020</td>
<td>Frontiers in Materials Science</td>
<td>3</td>
</tr>
<tr>
<td>MSEG5040</td>
<td>Topics in Advanced Materials Research IV (Transmission Electron Microscopy)</td>
<td>3</td>
</tr>
<tr>
<td>MSEG5080</td>
<td>Surface Science</td>
<td>3</td>
</tr>
<tr>
<td>MSEG7210</td>
<td>Guided Study</td>
<td>1</td>
</tr>
<tr>
<td>MSEG8003</td>
<td>Thesis Research</td>
<td>3</td>
</tr>
<tr>
<td>MSEG8006</td>
<td>Thesis Research</td>
<td>6</td>
</tr>
<tr>
<td>MSEG8012</td>
<td>Thesis Research</td>
<td>12</td>
</tr>
<tr>
<td>PHYS5320</td>
<td>Photonics: Materials and Devices</td>
<td>3</td>
</tr>
<tr>
<td>PHYS5330</td>
<td>Instrumentation I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS5350</td>
<td>Techniques in Materials Characterization</td>
<td>4</td>
</tr>
<tr>
<td>PHYS5410</td>
<td>Advanced Quantum Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS5420</td>
<td>Classical Electrodynamics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS5430</td>
<td>Solid State Theory</td>
<td>3</td>
</tr>
<tr>
<td>PHYS5450</td>
<td>Introduction to Soft Matter Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS5460</td>
<td>Instrumentation II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS5510</td>
<td>Topics in Theoretical Physics (Advanced Statistical Mechanics)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS5520</td>
<td>Topics in Theoretical Physics (Introduction to Many-body Theory)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS5530</td>
<td>Topics in Theoretical Physics (Introduction to Particle Physics)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS5540</td>
<td>Topics in Theoretical Physics (Advanced Computational Physics)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS5550</td>
<td>Topics in Theoretical Physics (Quantum Optics)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS5560</td>
<td>Topics in the Frontiers of Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS5561</td>
<td>Topics in the Frontiers of Physics (General Relativity)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS5570</td>
<td>Methods in Theoretical Physics III</td>
<td>3</td>
</tr>
<tr>
<td>PHYS5580</td>
<td>Physics of Quantum Information and Quantum Computation</td>
<td>3</td>
</tr>
<tr>
<td>PHYS5590</td>
<td>Modern Atomic Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS5610</td>
<td>Introduction to Biophysics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS5620</td>
<td>Topics in Experimental Physics (Thin Film Physics and Technology)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS5660</td>
<td>Semiconductor Physics and Devices</td>
<td>3</td>
</tr>
<tr>
<td>PHYS5710</td>
<td>Guided Study</td>
<td>3</td>
</tr>
<tr>
<td>PHYS5720</td>
<td>Guided Study</td>
<td>3</td>
</tr>
</tbody>
</table>

Study Scheme

Learning Outcomes

1. Our research programmes aim to educate researchers to embark on careers that would allow them to become world leaders in their fields, working as university professors, principal investigators in research institutes, senior managers in enterprises, or experts in other professions related to the pursuit and application of knowledge.

2. The University expects doctoral degree graduates of research programmes to have acquired in-depth knowledge in a number of major areas of an academic discipline while maintaining a broad understanding of other related fields. Doctoral degree graduates should have accumulated enough educational experience and background learning to be capable of performing independent research to advance scholarship, with global standards. In particular, doctoral graduates should have the ability to identify research trends and opportunities, venture into new research areas when appropriate, define long-term research objectives,
formulate original research problems, and originate and develop solution methodologies. Doctoral graduates should be capable of producing research output at a level that can either lead to publications in high-ranking scholastic venues, or to novel applications in relevant industrial, commercial, or other public sectors, or to other forms of useful knowledge transfer to society. They should have gained proficiency in techniques of knowledge dissemination through presentation and writing and some teaching experiences through student tutoring.

3. The University expects master's degree graduates of research programmes to have acquired advanced knowledge in major areas of an academic discipline while maintaining a broad understanding of other related fields. Master's degree graduates should have gained enough background knowledge to enable them to perform research with minimal supervision. In particular, they should have the ability to formulate individual research tasks and to develop solution methodologies under minimal supervision. Master's degree graduates should be capable of producing original, innovative research output, some of which may lead to publication in well-respected scholastic venues. They should have gained proficiency in techniques of knowledge dissemination through presentation and writing.

4. For graduates of research programmes at both doctoral and master's level, communication and language skills at a level appropriate to university graduates are expected already at the time of admission. In particular, fluent communication skills are expected in the language(s) essential to their research areas. In general, a high level of proficiency in English is expected as it is commonly regarded as the default international research language. Ability in a second language is encouraged.